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92 6. Models. Statistical Inference and Learning
6.12 Definition. An estimator is asymptotically Normal if T frme i T e

g _f ) ) o ieb ciyre TF et B -

n e N (0 1\ (68) - RIS, It vorn torm, T

se - vour life. 95 percent EE

T« < true even though vl et

cestion) every dav. m

6.3.2 Confidence Sets : 14 Example. The fact that = .0
A 1 — o confidence interval for a parameter g is an interval C,, = (a.b) - wbout § is confusing. Chisii-.
where a = a(Xy.....- X,) and b = b(X1.. .. oe Y, } are functions of the data ~~% . Let 8 be a fixed. knovo oo
cuch that Cm variables such thar = V=

Py(fe () >1—a. foralldec®. (6.9) = = X, and suppose that =

onfidence interval” whivi <~

In words. (a.b) traps 8 with probability 1 —a. We call 1 — a the coverage of
the confidence interval. c -
Warning! (', is random and f is fixed. £y -
Commonly. people use 95 percent confidence intervals. which corresponds
. can check that, no matter = -~

to choosing a = 0.05. If 8 is a vector then we use a confidence set ‘such as
g . . .
- 73 percent confidence lnrerv. >

et Yy =15 and Yo = 17, Thes

I ever, we are certain that = =

a sphere or an ellipse) instead of an interval.
Warning! There is nuch confusion about how to interpret a confidence

interval. A confidence interval is not a probability statenient about 8 since -
9 is a fixed quantity. not a random variable. Some texts interpret confidence - -.'-v»lment about 9 you \?'OUH b
intervals as follows: if I repeat the experiment over and over. the interval will Tulllg WIONg Wlfl.l saying that - ‘_'
contain the parameter 95 percent of the time. This is correct but useless since + 7 not a probability statemewns

we rarely repeat the same experiment over and over. A better interpretation I:1 Chapter 11 we will discuss B
is this: -+» a random variable and we ..

. ricular. we will make statemeis~ .
On day 1, you collect data and construct a 95 percent confidence .

interval for a parameter 6;. On day 2, you collect new data and con-

data. is 95 percent.” However.

_ _ -_helief probabilities. These Bayv-~
struct a 95 percent confidence interval for an unrelated parameter t.

On day 3, you collect new data and construct a 95 percent confi-

- rameter 95 percent of the time.

dence interval for an unrelated parameter f5. You continue this way 5.15 Example. In the coin flippir -
constructing confidence intervals for a sequence of unrelated param- - =log(2/a)/(2n). From Hoeft i
cters #.0s. ... Then 95 percent of your intervals will trap the true R
parameter value. There is no need to introduce the idea of repeating S
the same experiment over and over. - v every p. Hence. C,isal—-a.
6.13 Example. Every day, newspapers report opinion polls. For example. they As mentioned earlier. point esri:
might say that "33 percent of the population favor arming pilots with guns.” --ibution. meaning that equation -

Usuallv. vou will see a statement like “this poll is accurate to within 4 points 1se we can construct (approximac-




o-otically Normal if

(6.8)

—--r = ix an interval O, = (a.b)
Y. are functions of the data

Sy Llez e, (6.9)

©— . Wecall 1 — o the coverage of

- = atervals. which corresponds

- - 2= a confidence set (such as

- owoto interpret a confidence

- irv statement about 8 since

<. :ne rexts interpret confidence
...... - .wer and over, the interval will
- .- Tuis is correct but useless since

.7 onver, A better interpretation

s-_z7 2 95 percent confidence

-_ -ziect new data and con-

“:- z= unrelated parameter 6.

"
i

- ---struct a 95 percent confi-

~. You continue this way
-z 22z _e~ce of unrelated param-
.z.- ~zervals will trap the true

. -=-zz.ce the idea of repeating

-+ inion polls. For example. they

- . sxvor anning pilots with guns.”

.~ © s accurate to within 4 points

6.3 Fundamental Concepts in Inference 93

= percent of the time.” They are saving that 83 +4 is a 95 percent confidence
~rerval for the true but unknown proportion p of people who favor arming
ot with guns. If vou form a confidence interval this way every day for the
~t of vour life. 95 percent of vour intervals will contain the true parameter.
Tais is true even though vou are estimating a different quantity (a different

A question) every dav. m

5.14 Example. The fact that a confidence interval is not a probability state-
_.-ut about 8 is confusing. Consider this example from Berger and Wolpert
“ind). Let 6 be a fixed. known real number and let X;. X, be independent
-rdom variables such that P(X, = 1) = P(X, = —1) = 1/2. Now define
" =8+ X; and suppose that vou only observe Y] and Y5. Define the follow-

2 confidence interval” which actually only contains one point:

-1 iYL= 1)
{1 +Y2)/2} if Y1 # Yo

C:

"1 can check that, no matter what 4 is. we have Py(6 € C) = 3/4 so this
- . 7H percent confidence interval. Suppose we now do the experiment and
- 2et Yy = 15 and Y, = 17. Then our 75 percent confidence interval is {16}.
= wever. we are certain that # = 16. If vou wanted to make a probability
- cement about # vou would probably sav that P(6 ¢ C1Y1.Y,) = 1. There is
. -hing wrong with saving that {16} is a 75 percent confidence interval. But

- = not a probability statement about 4. m

21 Chapter 11 we will discuss Bavesian methods in which we treat 8 as if it
-~ a random variable and we do make probability statements about 6. In
-rsicular. we will make statements like “the probability that 4 is in (. given
data, is 95 percent.” However. these Bavesian intervals refer to degree-
---elief probabilities. These Bayesian intervals will not. in general. trap the

rameter 95 percent of the time.

215 Example. Iu the coin flipping setting. let C,, = (P, — €,,. Pn +€,) where
- =log(2/a)/(2n). From Hoeffding's inequality (4.4} it follows that

PlpeCpr)>1-a
- —verv p. Hence. ), is a 1 — o confidence interval. m

~~ mentioned earlier. point estimators often have a limiting Normal dis-
. . . ‘e .o - -~ .
:rion, meaning that equation (6.8) holds, that is. 8, =~ N(6,se7). In this

- we can construct (approximate) confidence intervals as follows.
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156 10. Hypothesis Testing and p-values

« il >
ty

- g L >
fo

FIGURE 10.2. Scientific significance versus statistical significance. A level o test
rejects Hy @ 8 = 6 if and only if the 1 — a confidence interval does not include
fo. Here are two different confidence intervals. Both exclude #5 so in both cases the
test would reject Hy. But in the first case. the estimated value of 8 is close to 6y so
the finding is probably of little scientific or practical value. In the second case. the
estimated value of A is far from 6y so the finding is of scientific value. This shows
two things. First. statistical significance does not imply that a finding is of scientific
importance. Second. confidence intervals are often more informative than tests.

10.2  p-values

Reporting “reject Hy" or ‘retain Hy" is not veryv informative. Instead. we
could ask. for every a. whether the test rejects at that level. Generally. if the
test rejects at level a it will also reject at level a’ > a. Hence. there is a
smallest a at which the test rejects and we call this number the p-value. See
Figure 10.3.

10.11 Definition. Suppose that for every o € (0.1) we have a size o test
with rejection region R,. Then.

p-value = iuf{a T(X"Y 2R, }

That is. the p-value is the smallest level at which we can reject Hy.

Informally. the p-value is a measure of the evidence against Hy: the smaller
the p-value. the stronger the evidence against Hy. Typically. researchers use

the following evidence scale:

Yes p—

Reject?

0

PVl

“IGURE 10.3. p-values explained. F-
=t level a? The p-value is the smalie~-
:gainst Ho is strong. the p-value will °

p-value eviderzs
< .01 Verv =

01 .05 strons
05 - .10 weak -
> .1 little o -

Warning! A large p-value is .-
s-value can occur for two reasons:

zas low power,

Warning! Do not confuse the -
not the probability that the null

The following result explains hice: -

2We discuss quantities like P(Hy:Data -




-~ -~ ristical significance. A level o test
- ~nndence interval does not include
- .~ 2.h exclude 8y so in both cases the
-~ —<~imated value of 8 is close to 8y so
- - - . wical value. In the second case. the
- ez ik of scientific value. This shows
-~ ot implyv that a finding is of scientific
<« more informative than tests.

~ o1 very informative. Instead. we
- _—-s at that level. Generally. if the
- = level @’ > a. Hence. there is a

- =~ -all this number the p-value. See

(0. 1) we have a size a test

X2 RQ}.

- hich we can reject Hy.

i

2 -~ avidence against Hy: the smaller

-<inst Hy. Typically. researchers use

10.2 p-values 157

SYQ S P —

Reject?

p-value

“IGURE 10.3. p-values explained. For each a we can ask: does our test reject Hy
1 Jevel a? The p-value is the smallest o at which we do reject Hy. If the evidence
-zainst Hy is strong. the p-value will be small.

p-value evidence

< .01 very strong evidence against Hy
01 - .05 strong evidence against Hy

.05 .10  weak evidence against Hy

> .1 little or no evidence agaiust Hy

Warning! A large p-value is not strong evidence in favor of Hy. A large
“-value can occur for two reasons: (i) Hy is true or (ii) Hy is false but the test

. «x low power.

Warning! Do not confuse the p-value with P(Hy/Data).  The p-value is
not the probability that the null hypothesis is true.

The following result explains how to compute the p-value.

“We discuss quantities like Z(f{y|Data) in the chapter on Bayesian inference.
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158 10. Hypothesis Testing and p-values

10.12 Theorem. Suppose that the size a test is of the form
reject Hy if and only if T(X") > ¢,.

Then.

p-value = sup Po(T(X") > T(r™)
0cey,

where & is the observed value of X™. If ©g = {#y} then

p-value = Py (T{X") = T(a")).

We can express Theorem 10.12 as follows:

The p-value is the probability (under Hy) of observing a value of the
test statistic the same as or more extreme than what was actually
observed.

10.13 Theorem. Let u = ((57 8y)/se denote the observed value of the
Wald statistic W. The p-value is given by

p —value = Py (1] > Jul) = P([Z] > hwl) = 20(—|uw)) (10.7)

where Z ~ N(0.1).

To understand this last theorem. look at Figure 10.4.

Here is an important property of p-values.

10.14 Theorem. If the test statistic has a continuous distribution. then under

Hy : 8 = 6y, the p-value has a Uniform (0.1) distribution. Therefore. if we
reject Hy when the p-value is less than a. the probability of a type I error is
o

In other words, if Hy is true. the p-value is like a random draw from a
Unif(0.1) distribution. If H; is true. the distribution of the p-value will tend
to concentrate closer to 0.

10.15 Example. Recall the cholesterol data from Example 7.15. To test if the
means are different we compute

5—0 X -V 216.2 — 195.3
w=0-0_ X _ A 27 378,

e \/i+i Vhe+2.42

m n

—

-+URE 10.4. The p-value iz -
.1 the p-value for the Wald t-~
undary of the rejection regicr:

= (6 — fy)/se. This implies -~
J N0 D).

_. compute the p-value. let 7
-riable. Then,

p-value = F( 7 >

~wich is very strong evidencr

a5 are different., let o) an: !
LD -
W=

<.

- ..-re the standard error 7.7
p-value=> 7

ich is strong evidence agai.

-3 The x? Distribny

z-iore proceeding we need t

-~ zependent, standard Normia.-
. % distribution with k degre-
~usity of Vs

~2 > 0. It can be shown the-

aantile i, = F (1 -a




