STATE OF NORTH CAROLINA

COUNTY OF WAKE

NORTH CAROLINA LEAGUE OF CONSERVATION VOTERS, INC.; HENRY M. MICHAUX, JR., et al.,

Plaintiffs,

REBECCA HARPER, et al.,

Plaintiffs,

V.

REPRESENTATIVE DESTIN HALL, in his official capacity as Chair of the House Standing Committee on Redistricting, et al.,

Defendants.

IN THE GENERAL COURT OF JUSTICE SUPERIOR COURT DIVISION 21 CVS 015426, 21 CVS 500085

AFFIDAVIT OF PROFESSOR MOON DUCHIN

- I, Dr. Moon, Duchin, having been duly sworn by an officer authorized to administer oaths, depose and state as follows:
 - 1. I am over 18 years of age, legally competent to give this Affidavit, and have personal knowledge of the facts set forth in this Affidavit.
 - 2. All of the quantitative work described in this Affidavit was performed by myself with the support of research assistants working under my direct supervision.

Background and qualifications

- 3. I hold a Ph.D. and an M.S in Mathematics from the University of Chicago as well as an A.B. in Mathematics and Women's Studies from Harvard University.
- 4. I am a Professor of Mathematics and a Senior Fellow in the Jonathan M. Tisch College of Civic Life at Tufts University.
- 5. My general research areas are geometry, topology, dynamics, and applications of mathematics and computing to the study of elections and voting. My redistricting-related work has been published in venues such as the Election Law Journal, Political Analysis, Foundations of Data Science, the Notices of the American Mathematical Society, Statistics and Public Policy, the Virginia Policy Review, the Harvard Data Science Review, Foundations of Responsible Computing, and the Yale Law Journal Forum.
- 6. My research has had continuous grant support from the National Science Foundation since 2009, including a CAREER grant from 2013–2018. I am currently on the editorial board of the journals Advances in Mathematics and the Harvard Data Science Review. I was elected a Fellow of the American Mathematical Society in 2017 and was named a Radcliffe Fellow and a Guggenheim Fellow in 2018.
- 7. A current copy of my full CV is attached to this report.
- 8. I am compensated at the rate of \$400 per hour.

Analysis of 2021 enacted redistricting plans in North Carolina

Moon Duchin Professor of Mathematics, Tufts University Senior Fellow, Tisch College of Civic Life

December 23, 2021

1 Introduction

On November 4, 2021, the North Carolina General Assembly enacted three districting plans: maps of 14 U.S. Congressional districts, 50 state Senate districts, and 120 state House districts. This affidavit contains a brief summary of my evaluation of the properties of these plans. My focus will be on the egregious partisan imbalance and racial vote dilution in the enacted plans, following a brief review of the traditional districting principles.

Because redistricting inevitably involves complex interactions of rules, which can create intricate tradeoffs, it will be useful to employ a direct comparison to an alternative set of plans. These demonstrative plans illustrate that it is possible to *simultaneously maintain or improve* metrics for all of the most important redistricting principles that are operative in North Carolina's constitution and state and federal law. Crucially, this shows that nothing about the state's political geography compels us to draw a plan with a massive and entrenched partisan skew or a significant dilutive effect on Black voters.

To this end, I will be comparing the following plans: the enacted plans SL-174, SL-173, and SL-175 and a corresponding set of alternative plans labeled NCLCV-Cong, NCLCV-Sen, and NCLCV-House (proposed by plaintiffs who include the North Carolina League of Conservation Voters). The accompanying block assignment files are Appendices A1, A2, A3 to this affidavit, and I understand that they will be provided to the court in native format.

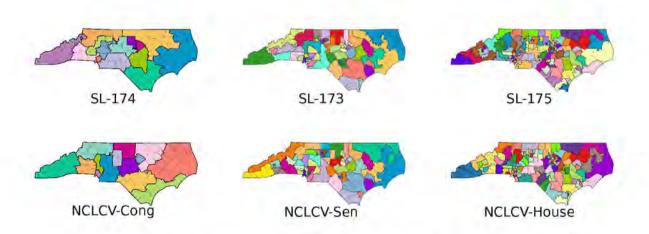


Figure 1: The six plans under discussion in this affidavit.

2 Partisan gerrymandering

2.1 Abstract partisan fairness

There are many notions of partisan fairness that can be found in the scholarly literature and in redistricting practitioner guides and software. Most of them are numerical, in the sense that they address how a certain quantitative share of the vote should be translated to a quantitative share of the seats in a state legislature or Congressional delegation.

The numerical notions of partisan fairness all tend to agree on one central point: an electoral climate with a roughly 50-50 split in partisan preference should produce a roughly 50-50 representational split. I will call this the *Close-Votes-Close-Seats* principle. North Carolina voting has displayed a partisan split staying consistently close to even between the two major parties over the last ten years, but the plans released by the General Assembly after the 2010 census were very far from realizing the ideal of converting even voting to even representation. This time, with a 14th seat added to North Carolina's apportionment, an exactly even seat outcome is possible. But the new enacted plans, like the plans from ten years ago, are decidedly not conducive to even representation.

Importantly, Close-Votes-Close-Seats is not tantamount to a requirement for proportionality. Rather, it is closely related to the principle of *Majority Rule*: a party or group with more than half of the votes should be able to secure more than half of the seats. In fact, Close-Votes-Close-Seats is essentially a corollary (or byproduct) of Majority Rule. It is not practicable to design a map that *always* attains these properties, but by contrast a map that *consistently thwarts* them should be closely scrutinized and usually rejected.

Unlike proportionality, neither Close-Votes-Close-Seats nor Majority Rule has any bearing on the preferred representational outcome when one party has a significant voting advantage: these principles are silent about whether 70% vote share should secure 70% of the seats, as proportionality would dictate, or 90% of the seats, as supporters of the efficiency gap would prefer. The size of the "winner's bonus" is not at all prescribed by a Close-Votes-Close-Seats norm.

2.2 Geography and fairness

Some scholars have argued that all numerical ideals, including Close-Votes-Close-Seats, ignore the crucial *political geography*—this school of thought reminds us that the location of votes for each party, and not just the aggregate preferences, has a major impact on redistricting outcomes. In [5], my co-authors and I gave a vivid demonstration of the impacts of political geography in Massachusetts: we showed that for a ten-year span of observed voting patterns, even though Republicans tended to get over one-third of the statewide vote, it was impossible to draw a single Congressional district with a Republican majority. That is, the geography of Massachusetts Republicans locked them out of Congressional representation. It is therefore not reasonable to charge the Massachusetts legislature with gerrymandering for having produced maps which yielded all-Democratic delegations; they could not have done otherwise.

In North Carolina, this is not the case. The alternative plans demonstrate that it is possible to produce maps that give the two major parties a roughly equal opportunity to elect their candidates. These plans are just examples among many thousands of plausible maps that convert voter preferences to far more even representation by party. In Congressional redistricting, present-day North Carolina geography is easily conducive to a seat share squarely in line with the vote share. In Senate and House plans, even following the strict detail of the Whole County Provisions, there are likewise many alternatives converting nearly even voting patterns to nearly even representation, across a large set of recent elections.

The clear conclusion is that the political geography of North Carolina today does not obstruct the selection of a map that treats Democratic and Republican voters fairly and evenhandedly.

2.3 Overlaying elections and plans

The enacted plans behave as though they are built to resiliently safeguard electoral advantage for Republican candidates. We can examine this effect without invoking any predictions or assumptions about future voting behavior by using a standard technique in election analysis: pairing proposed plans with actual recent elections. This method works by overlaying (or superimposing) the districting plans on a series of observed voting patterns from the recent past; this lets us take advantage of the rich dataset of real electoral outcomes in North Carolina in the last ten years to avoid speculative or predictive modeling about voting trends in the future.¹

The overlay method works best when there is a large set of statewide elections to apply, which is certainly true in North Carolina. Of the 52 statewide party-ID general elections from the last cycle, 29 are elections for Council of State (ten offices elected three times, with the Attorney General race uncontested in 2012), three are presidential races, three are for U.S. Senate, and 17 are judicial races since mid-decade, when those became partisan contests. See Table 1 for more detail on the election dataset.

2.4 Partisanship outcomes

North Carolina is a very "purple" state. In 38 out of the 52 contests in our dataset, the statewide partisan outcome is within a 6-point margin: 47-53 or closer.

To understand how the enacted plans create major shortfalls for Democratic representation, we will overlay the plans with voting patterns from individual elections in the past Census cycle. We can make a striking observation by laying our six plans over the vote patterns, shown in Table 1. This reveals that the enacted Congressional plan (SL-174) shows a remarkable lack of responsiveness, giving 10–4 partisan outcomes across a wide range of recent electoral conditions, meaning that 10 Republicans and only 4 Democrats would represent North Carolina in Congress. The alternative plan (NCLCV-Cong) is far more faithful to the vote share, far more responsive, and tends to award more seats to the party with more votes—usually upholding both basic small-d-democratic principles of Majority Rules and Close-Votes-Close-Seats, which are violated by the enacted plan.

The same patterns are visible at the Senate and House level. Overall, the three enacted plans combine with those 38 relatively even vote patterns to produce 114 outcomes. Every single pairing of an enacted plan with a close statewide contest—a complete sweep of 114 opportunities—gives an *outright Republican majority* of seats. All three enacted plans will lock in an extreme, resilient, and unnecessary advantage for one party.

By every measure considered above that corresponds to a clear legal or good-government redistricting goal or value, the alternative plans meet or exceed the performance of the enacted plans. This demonstrates that it is possible, without any cost to the redistricting principles in play, to select maps that are far fairer to the voters of North Carolina.

Below, the outcomes of overlaying the plans on the elections will be presented in a series of tables and figures. First, Table 1 overviews the overlays with numbers. Then, Figure 2 offers a visualization to depict the same big picture of entrenched partisan advantage in the enacted plans with the full 52-election dataset. The diagonals show various lines of *responsiveness* that pivot around the central point of fairness: half of the votes securing half of the seats.

Finally, we will restrict to a smaller set of the 14 "up-ballot" races and consider the comparison for one office at a time in Figures 3-5.

¹Many authors have used this technique of overlaying "exogenous" statewide elections rather than using statistical regressions and other modeling to manipulate "endogenous" districted elections. For instance this can be found in peer-reviewed work and expert reports of scholar-practitioners such as Bernard Grofman and Steven Ansolabehere.

 $^{^2}$ The backup data supporting Table 1 is attached to this report as Appendix C and I understand that it will be provided to the court in native format.

Do close votes translate to close seats?

The table records the number of districts in each plan with a Democratic win. This shows that the enacted maps systematically violate the principles of Close-Votes-Close-Seats and Majority Rule.

	D Vote Share	SL-174	NCLCV-Cong	SL-173	NCLCV-Sen	SL-175	NCLCV-House
GOV12		4	4	16	18	41	44
AGC16	0.4444	4	4	17	17	40	42
LAC16		4	5	18	20	42	45
JHU16	0.4563	4	5	18	19	42	49
AGC20		3	4	17	19	40	51
JZA16	0.4619	4	5	19	21	43	50
JDI16	0.4653	4	6	19	21	44	53
LTG16		4	6	19	21	44	54
LAC12		4	5	20	20	44	51
AGC12		4	5	18	18	43	50
SEN16		4	6	19	21	43	55
			6	19	21		53
TRS16		4	6			45	
TRS20		4	0	17	20	45	51
JA620	0.4806	4	7	17	21	46	55
PRS16		4	7	19	22	48	56
JA420	0.4822	4	7	17	22	47	56
INC20	0.4823	4	7	18	23	47	56
LTG20		4	7	18	21	46	55
JA720	0.4842	4	7	17	22	48	56
SUP20	0.4862	4	7 7	19	23	49	56
JA520	0.4874	4	7	18	22	49	57
JA218	0.4876	4	7	18	22	45	55
JS420	0.4879	4	7	19	24	49	56
J1320	0.4885	4	7	19	23	49	56
PRS12		4	7 6	20	21	46	55
SEN20		4	7	20	24	48	56
LAC20		4	7 8	21	25	51	58
SEN14		4	6	20	22	46	52
PRS20		4	8	20	25	50	60
IS220	0.4934	4	8	21	24	51	59
SUP16		4	6	22	23	49	57
		4	7	20	25	50	58
JS118	0.4955		6				
INC16	0.4960	4	0	22	22	50	57
JST16	0.4976	4	7	21	23	50	58
LTG12	0.4992	5	7	22	22	50	58
JS120	0.5000	4	8	22	27	52	60
AUD16		5	8	22	23	51	56
GOV16		4	7	20	27	50	58
ATG20		4	8	21	25	51	58
ATG16		4	7	20	23	50	57
JA118	0.5078	4	8	22	26	51	58
AUD20	0.5088	4	8	24	28	54	61
JA318	0.5091	4	8	21	26	52	59
SOS20		5	8	24	28	53	62
IGE16	0.5131	5	8	22	25	52	59
INC12	0.5186	5	8	22	22	55	61
50516		5	9	24	24	57	62
GOV20		4	8	23	27	58	63
AUD12		8	9	27	28	61	65
SOS12		7	9	26	26	59	63
TRS12		7	9	25	24	59	65
		8	9	28		61	66
SUP12	0.5424	0	9	20	28	01	00

AGC = Agriculture Commissioner; ATG = Attorney General; AUD = Auditor; GOV = Governor; INC = Insurance Commissioner; LAC = Labor Commissioner; LTG = Lieutenant Governor; PRS = President; SEN = Senator; SOS = Secretary of State; SUP = Superintendent of Public Instruction; TRS = Treasurer. The prefix JA* refers to judicial elections to the Court of Appeals (so that, for instance, JA118 is the election to the Seat 1 on the Court of Appeals in 2018), JS* are elections to the state Supreme Court. All other J* prefixes refer to an election to replace a specific judge on the Court of Appeals. Where there was more than one judicial candidate from a given party on the ballot, they were combined for this analysis. The two-digit suffix designates the election year.

Table 1: 52 general elections, sorted from lowest to highest Democratic share.

Seats vs. Votes

Majority Rule says that outcomes should tend to fall in the Northeast and Southwest quadrants, avoiding the Southeast and Northwest. Close-Votes-Close-Seats says that points should not miss the bulls-eye near the center by systematically deviating to the North or the South. These principles are clearly upheld by the alternative plans (green) and violated by the enacted plans (maroon).

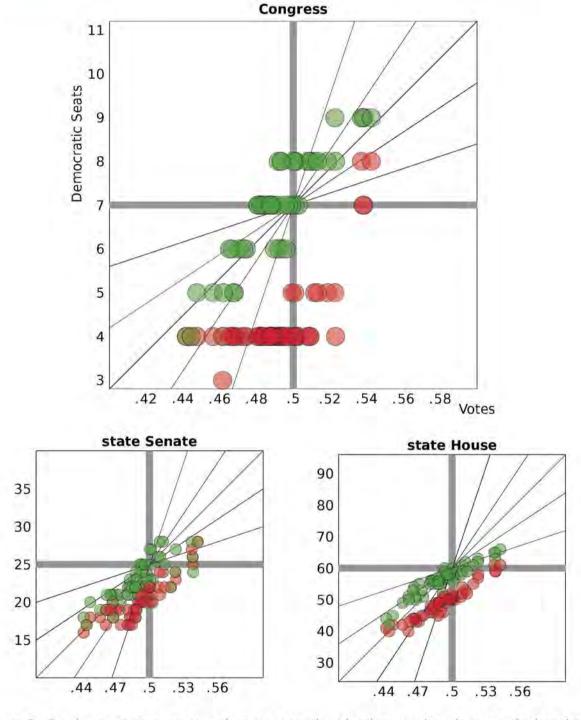


Figure 2: On these seats-vs.-votes plots, we see the election results when overlaying the six maps on the 52 general election contests in the last decade; each colored dot is plotted as the coordinate pair (vote share, seat share).

2.5 Up-ballot races

The same patterns are apparent if we narrow our focus to the smaller set of better-known "up-ballot" races: in order, the first five to appear on the ballot are the contests for President, U.S. Senator, Governor, Lieutenant Governor, and Attorney General. Together these occurred 14 times in the last Census cycle.

	Up-ballot generals (14)		All gene	rals (52)
	D vote share	D seat share	D vote share	D seat share
SL-174	.4883	.2908	4011	.3118
NCLCV-Cong	.4883	.4796	.4911	.4931
SL-173	.4883	.3957	.4911	.4065
NCLCV-Sen	.4003	.4557	.4911	.4592
SL-175	.4883	.3994	4011	.4080
NCLCV-House	.4883	.4649	.4911	.4684

Table 2: Comparing overall fidelity of representation to the voting preferences of the electorate. Vote shares are computed with respect to the major-party vote total.

Figure 3 shows the performance of the Congressional maps in the three Presidential contests in the last Census cycle, where the Democratic vote share (pink box) was between 48% and 50% of the major-party total each time. For a contest that is so evenly divided, we would expect a fair map to have 6, 7, or 8 out of 14 districts favoring each party. The alternative Congressional map NCLCV-Cong does just that, while the enacted plan SL-174 has just 4 out of 14 Democratic-majority districts each time (green and maroon circles). The alternative plan is far more successful at reflecting the even split of voter preferences.

Congressional plan comparison in Presidential elections

Do close votes translate to close seats?

Figure 3: When Presidential voting is overlaid on the plans, we can compare the Democratic seat share in the enacted Congressional plan SL-174 (maroon) and the alternative Congressional plan NCLCV-Cong (green) to the vote share (plant) for Democratic candidates. The 50% line is marked.

Next, simplified versions of the same type of graphic are presented for all five up-ballot offices. Figure 4 compares Congressional maps, and Figure 5 compares legislative maps in the same fashion.

In these figures, we can view whether the plans display a tendency to uphold the Close-Votes-Close-Seats norm, for one office at a time. The pink squares are the vote share. If they are close to the 50-50 mark, then a fair map would also produce seat shares that are close to that mark. This is consistently true for the alternative plans and consistently false for the enacted plans.

Congressional plan comparison across up-ballot races

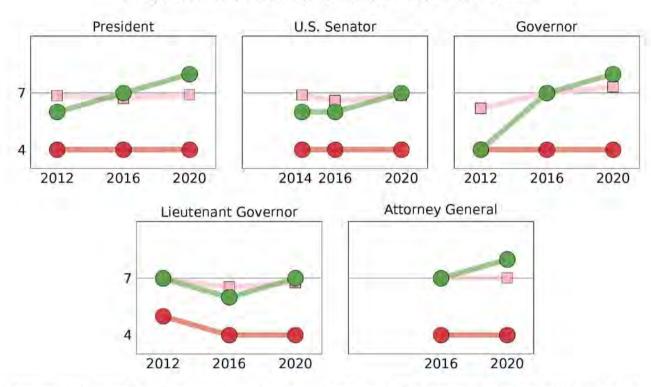
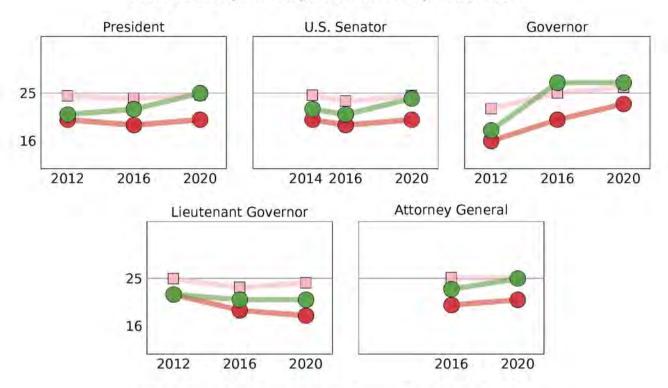



Figure 4: For up-ballot general election contests across the previous Census cycle, we can compare the seat share under the enacted Congressional plan SL-174 (maroon) and the seat share under the alternative Congressional plan NCLCV-Cong (green) to the vote share (pink) for Democratic candidates. The presidential comparison from the previous figure is repeated here, alongside the other four up-ballot offices. The 50% line is marked each time.

State Senate plan comparison across up-ballot races

State House plan comparison across up-ballot races

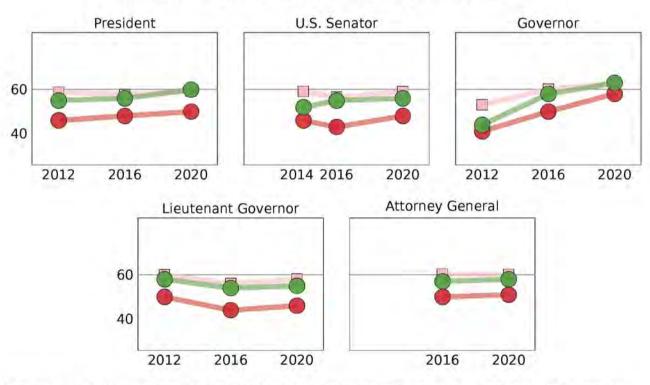


Figure 5: Legislative plans overlaid with voting patterns from up-ballot elections. The enacted plans SL-173 and SL-175 are shown in **maroon**. The alternative plans NCLCV-Sen and NCLCV-House, in **green**, have seat shares tracking much closer to the nearly even voting preferences.

3 Racial vote dilution

North Carolina has a large minority of Black-identified residents. Over two million North Carolinians—2,107,526 out of 10,439,388 to be precise, or about 20.2%—were identified as non-Hispanic Black-alone on the Census. Within the voting-age population, the numbers shift to 1,620,569 out of 8,155,099, or about 19.9%. Increasing numbers of Americans identify as Black in combination with other races and/or Hispanic ethnicity. Passing to this more expansive definition of Black voting age population raises the numbers to 1,743,052 out of 8,155,099, or 21.4%.

Minority groups' opportunity to elect candidates of choice is protected by both state and federal law. A detailed assessment of opportunity must not primarily hinge on the demographics of the districts, but must also rely on electoral history and an assessment of polarization patterns.³

I have used industry-leading techniques to study the racial polarization patterns in North Carolina general and primary elections from the last decade. They indicate a consistent pattern of polarization in statewide general elections, such that White voters are estimated to support the Republican candidate at a rate of over 61% in every general election, and Black voters are estimated to support the Democratic candidate at a rate of over 94% each time. Polarization is present in many Democratic primary elections as well, particularly in elections in which there is a Black Democratic candidate. I have designated a selection of eight elections—four generals and four primaries—chosen to be particularly informative in determining whether Black voters have an opportunity to elect their candidates of choice.

Democratic Primaries

- Sutton preferred over Mangrum in the 2020 Superintendent primary;
- Smith preferred over Wadsworth in the 2020 Ag. Commissioner primary;
- Williams preferred over Stein in the 2016 Attorney General primary;
- Coleman preferred over the field in the 2016 Lieutenant Governor primary.

General Elections

- Holley preferred over Robinson in the 2020 Lieutenant Governor election;
- Cunningham preferred over Tillis in the 2020 U.S. Senate election:
- Coleman preferred over Forest in the 2016 Lieutenant Governor election;
- Blue preferred over Folwell in the 2016 Treasurer election.

These eight contests were chosen by a combination of factors that combine to make an election particularly informative with respect to the preferences of Black voters. Namely: I prioritized elections that are more recent, that have a Black candidate on the ballot, that are clearly polarized, and that are close enough to produce variation at the district level.⁴

The electoral alignment score derived from these elections is a value from 0 to 8. I consider a district in which the Black candidate of choice prevails in at least 6 of these 8 contests to be aligned with Black voting preferences in the state.⁵ If, in addition, at least 25% of the voting age population is Black, then I label the district to be effective for Black voters.

I note that the use of electoral history is not just cosmetic: there are House-sized districts with 35-39% BVAP that are nonetheless not labeled effective in these lists because they fall short of the standard of inclining to the Black candidate of choice in at least six out of the eight chosen elections.

³A detailed discussion of the inadequacy of using demographics alone as a proxy can be found in [3].

⁴Of the candidates above, Sutton, Williams, Coleman, Colley, and Blue are themselves Black-identified.

⁵I have used statewide ecological inference ("EI") runs to determine the candidate of choice for Black voters. I note that it is also possible to run EI on smaller geographies (such as counties or county clusters) to detect regional candidates of choice rather than statewide candidates of choice; in most cases, these will be the same, but in some cases, regional effects may be meaningful and could affect these results at the margin.

At all three levels, the NCLCV alternative maps provide more effective opportunity-to-elect districts for Black voters than the corresponding enacted plans.

Effective districts for Black voters

Out of 14 Congressional districts, SL-174 has 2 effective districts, while NCLCV-Cong has 4. Out of 50 Senate districts, SL-173 has 8 effective districts, while NCLCV-Sen has 12. Out of 120 House districts, SL-175 has 24 effective districts, while NCLCV-House has 36.

effective districts in state plan	effective districts in alternative plan
CD2, 9	CD2, 4, 9, 11
SD5, 11, 14, 19, 28, 38, 39, 40	SD1, 5, 11, 14, 18, 19, 26, 27, 32, 38, 39, 40
HD8, 23, 24, 25, 27, 32, 38, 39, 42, 44, 48, 57, 58, 60, 66, 71, 92, 99, 100, 101, 102, 106, 107, 112	HD2, 8, 9, 10, 23, 24, 25, 27, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 48, 57, 58, 59, 60, 61, 63, 66, 71, 88, 92, 99, 100, 101, 102, 106, 107, 112

4 Detailed plan comparison

Detailed maps showing how the district lines cut through the patterns of Democratic and Republican support, and how they cut through the demographic location of Black voting age population, can be found in Appendix B.

4.1 Traditional districting principles

Principles that are relevant to North Carolina redistricting include the following.

• **Population balance.** The standard interpretation of *One Person, One Vote* for Congressional districts is that districts should be fine-tuned so that their total Census population deviates by no more than one person from any district to any other.

There is more latitude with legislative districts; they typically vary top-to-bottom by no more than 10% of ideal district size. In North Carolina, the Whole County Provisions make it very explicit that 5% deviation must be tolerated if it means preserving more counties intact.

All six plans have acceptable population balance.

Population deviation

	Max Positive Deviation	District	Max Negative Deviation	District
SL-174	0	(eight districts)	-1	(six districts)
NCLCV-Cong	0	(eight districts)	-1	(six districts)
SL-173	10,355 (4.960%)	5	-10,434 (4.997%)	13,18
NCLCV-Sen	10,355 (4.960%)	5	-10,427 (4.994%)	15
SL-175	4250 (4.885%)	18	-4189 (4.815%)	112
NCLCV-House	4341 (4.990%)	82	-4323 (4 <i>.</i> 969%)	87

Table 3: Deviations are calculated with respect to the rounded ideal district populations of 745,671 for Congress, 208,788 for Senate, and 86,995 for House.

- **Contiguity.** All six plans are contiguous; for each district, it is possible to transit from any part of the district to any other part through a sequence of census blocks that share boundary segments of positive length. As is traditional in North Carolina, contiguity through water is accepted.
- **Compactness.** The two compactness metrics most commonly appearing in litigation are the *Polsby-Popper score* and the *Reock score*. Polsby-Popper is the name given in redistricting to a metric from ancient mathematics: the isoperimetric ratio comparing a region's area to its perimeter via the formula $4\pi A/P^2$. Higher scores are considered more compact, with circles uniquely achieving the optimum score of 1. Reock is a different measurement of how much a shape differs from a circle: it is computed as the ratio of a region's area to that of its circumcircle, defined as the smallest circle in which the region can be circumscribed. From this definition, it is clear that it too is optimized at a value of 1, which is achieved only by circles.

These scores depend on the contours of a district and have been criticized as being too dependent on map projections or on cartographic resolution [1, 2]. Recently, some mathematicians have argued for using discrete compactness scores, taking into account the units of Census geography from which the district is built. The most commonly cited discrete score for districts is the *cut edges score*, which counts how many adjacent pairs of geographical units receive different district assignments. In other words, cut edges measures the "scissors complexity" of the districting plan: how much work would have to be done to separate the districts from each other? Plans with a very intricate boundary would require many separations. This score improves on the contour-based scores by better controlling for factors like coastline and other natural boundaries, and by focusing on the units actually available to redistricters rather than treating districts like free-form Rorschach blots.

The alternative plans are significantly more compact than the enacted plans in all three compactness metrics.

Compactness

	block cut edges (lower is better)	average Polsby-Popper (higher is better)	average Reock (higher is better)
SL-174	5194	0.303	0.417
NCLCV-Cong	4124	0.383	0.470
SL-173	9702	0.342	0.416
NCLCV-Sen	9249	0.369	0.428
SL-175	16,182	0.351	0.437
NCLCV-House	13,963	0.414	0.465

Table 4: Comparing compactness scores via one discrete and two contour-based metrics. These scores were computed using dissolved districts based on the census blocks that were assigned in the plans under discussion.

District-by-district compactness scores for the contour-based metrics are shown in Tables 5-7.

		Reock		by-Popper
CD	SL-174	NCLCV-Cong	SL-174	NCLCV-Cong
1	0.517	0.534	0.324	0.403
2	0.303	0.47	0.278	0.323
3	0.484	0.212	0.331	0.228
4	0.487	0.412	0.39	0.304
5	0.468	0.582	0.347	0.514
6	0.418	0.472	0.231	0.483
7	0.424	0.664	0.199	0.434
8	0.472	0.523	0.532	0.398
9	0.678	0.579	0.469	0.43
10	0.41	0.285	0.197	0.254
11	0.282	0.553	0.207	0.532
12	0.247	0.388	0.243	0.368
13	0.41	0.558	0.266	0.379
14	0.232	0.354	0.221	0.313

Table 5: Compactness scores by district for the Congressional plans.

SD SL-173 NCLCV-Sen SL-173 NCLCV-Sen 1 0.263 0.297 0.213 0.174 2 0.231 0.397 0.105 0.178 3 0.409 0.409 0.179 0.179 4 0.564 0.564 0.406 0.406 5 0.403 0.403 0.335 0.335 6 0.616 0.616 0.595 0.595 7 0.213 0.553 0.219 0.411 8 0.446 0.457 0.439 0.478 9 0.443 0.441 0.217 0.226 10 0.618 0.618 0.614 0.614 11 0.464 0.346 0.357 0.257 0.4 12 0.42 0.388 0.395 0.404 13 0.284 0.357 0.257 0.4 14 0.399 0.523 0.247 0.45 15 0.397 <		F	Reock	Polsk	y-Popper
1 0.263 0.297 0.213 0.174 2 0.231 0.397 0.105 0.178 3 0.409 0.409 0.179 0.179 4 0.564 0.564 0.406 0.406 5 0.403 0.335 0.335 0.335 6 0.616 0.616 0.595 0.595 7 0.213 0.553 0.219 0.411 8 0.446 0.457 0.439 0.478 9 0.443 0.441 0.217 0.226 10 0.618 0.618 0.614 0.614 11 0.464 0.464 0.376 0.376 12 0.42 0.388 0.395 0.404 13 0.284 0.357 0.257 0.41 14 0.399 0.522 0.231 0.39 15 0.397 0.52 0.231 0.39 16 0.619 0.51 0.473 </td <td>SD</td> <td></td> <td></td> <td></td> <td></td>	SD				
2 0.231 0.397 0.105 0.178 3 0.409 0.409 0.179 0.179 4 0.564 0.564 0.406 0.406 5 0.403 0.403 0.335 0.335 6 0.616 0.695 0.595 0.595 7 0.213 0.553 0.219 0.411 8 0.446 0.457 0.439 0.478 9 0.443 0.441 0.217 0.226 10 0.618 0.618 0.614 0.614 11 0.464 0.464 0.376 0.376 12 0.42 0.388 0.395 0.404 13 0.284 0.357 0.257 0.4 14 0.399 0.523 0.247 0.45 15 0.397 0.52 0.231 0.398 16 0.619 0.51 0.473 0.388 17 0.488 0.54 0.361 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
3 0.409 0.179 0.179 4 0.564 0.564 0.406 0.406 5 0.403 0.335 0.335 6 0.616 0.616 0.595 0.595 7 0.213 0.553 0.219 0.411 8 0.446 0.457 0.439 0.478 9 0.443 0.4411 0.217 0.226 10 0.618 0.618 0.614 0.614 11 0.464 0.464 0.376 0.376 12 0.42 0.338 0.395 0.404 13 0.284 0.357 0.257 0.4 14 0.399 0.523 0.247 0.45 15 0.397 0.52 0.231 0.398 16 0.619 0.51 0.473 0.388 17 0.488 0.54 0.361 0.505 18 0.376 0.644 0.309 0.514 <tr< td=""><td>_</td><td></td><td></td><td></td><td></td></tr<>	_				
4 0.564 0.406 0.406 5 0.403 0.403 0.335 0.335 6 0.616 0.595 0.595 7 0.213 0.553 0.219 0.411 8 0.446 0.457 0.439 0.478 9 0.443 0.441 0.217 0.226 10 0.618 0.618 0.614 0.614 11 0.464 0.464 0.376 0.376 12 0.42 0.388 0.395 0.404 13 0.284 0.357 0.257 0.4 14 0.399 0.523 0.247 0.45 15 0.397 0.52 0.231 0.398 16 0.619 0.51 0.473 0.388 17 0.488 0.54 0.361 0.505 18 0.376 0.644 0.309 0.514 19 0.53 0.53 0.34 0.34	_				
5 0.403 0.403 0.335 0.335 6 0.616 0.616 0.595 0.595 7 0.213 0.553 0.219 0.411 8 0.446 0.457 0.439 0.478 9 0.443 0.441 0.217 0.226 10 0.618 0.614 0.614 0.614 11 0.464 0.464 0.376 0.376 12 0.42 0.388 0.395 0.404 13 0.284 0.357 0.257 0.4 14 0.399 0.523 0.247 0.45 15 0.397 0.52 0.231 0.398 16 0.619 0.51 0.473 0.388 17 0.488 0.54 0.361 0.505 18 0.376 0.644 0.309 0.514 19 0.53 0.53 0.34 0.34 20 0.384 0.387 0.363 <td></td> <td></td> <td></td> <td></td> <td></td>					
6 0.616 0.595 0.595 7 0.213 0.553 0.219 0.411 8 0.446 0.457 0.439 0.478 9 0.443 0.441 0.217 0.226 10 0.618 0.618 0.614 0.614 11 0.464 0.364 0.376 0.376 12 0.42 0.388 0.395 0.404 13 0.284 0.357 0.257 0.4 14 0.399 0.523 0.247 0.45 15 0.397 0.52 0.231 0.398 16 0.619 0.51 0.473 0.388 17 0.488 0.54 0.361 0.505 18 0.376 0.644 0.309 0.514 19 0.53 0.53 0.34 0.34 20 0.384 0.387 0.363 0.344 21 0.218 0.218 0.137 0.137 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
7 0.213 0.553 0.219 0.411 8 0.446 0.457 0.439 0.478 9 0.443 0.441 0.217 0.226 10 0.618 0.618 0.614 0.614 11 0.464 0.464 0.376 0.376 12 0.42 0.388 0.395 0.404 13 0.284 0.357 0.257 0.4 14 0.399 0.523 0.247 0.45 15 0.397 0.52 0.231 0.398 16 0.619 0.51 0.473 0.388 17 0.488 0.54 0.361 0.505 18 0.376 0.644 0.309 0.514 19 0.53 0.53 0.34 0.34 20 0.384 0.387 0.363 0.344 21 0.218 0.218 0.137 0.137 22 0.473 0.459 0.471<	_				
8 0.446 0.457 0.439 0.478 9 0.443 0.441 0.217 0.226 10 0.618 0.618 0.614 0.614 11 0.464 0.464 0.376 0.376 12 0.42 0.388 0.395 0.404 13 0.284 0.357 0.257 0.4 14 0.399 0.523 0.247 0.45 15 0.397 0.52 0.231 0.398 16 0.619 0.51 0.473 0.388 17 0.488 0.54 0.361 0.505 18 0.376 0.644 0.309 0.514 19 0.53 0.53 0.34 0.34 20 0.384 0.387 0.363 0.344 21 0.218 0.218 0.137 0.137 22 0.473 0.459 0.471 0.517 23 0.498 0.498 0.529					
9 0.443 0.441 0.217 0.226 10 0.618 0.618 0.614 0.614 11 0.464 0.364 0.376 0.376 12 0.42 0.388 0.395 0.404 13 0.284 0.357 0.257 0.4 14 0.399 0.523 0.247 0.45 15 0.397 0.52 0.231 0.398 16 0.619 0.51 0.473 0.388 17 0.488 0.54 0.361 0.505 18 0.376 0.644 0.309 0.514 19 0.53 0.53 0.34 0.34 20 0.384 0.387 0.363 0.344 21 0.218 0.218 0.218 0.137 0.137 21 0.218 0.218 0.218 0.137 0.137 22 0.473 0.459 0.471 0.517 23 0.49				l	
10 0.618 0.618 0.614 0.614 11 0.464 0.464 0.376 0.376 12 0.42 0.388 0.395 0.404 13 0.284 0.357 0.257 0.4 14 0.399 0.523 0.247 0.45 15 0.397 0.52 0.231 0.398 16 0.619 0.51 0.473 0.388 17 0.488 0.54 0.361 0.505 18 0.376 0.644 0.309 0.514 19 0.53 0.53 0.34 0.34 20 0.384 0.387 0.363 0.344 21 0.218 0.218 0.137 0.137 22 0.473 0.459 0.471 0.517 23 0.498 0.498 0.529 0.529 24 0.52 0.452 0.452 0.452 25 0.283 0.325 0.27					
11 0.464 0.464 0.376 0.376 12 0.42 0.388 0.395 0.404 13 0.284 0.357 0.257 0.4 14 0.399 0.523 0.247 0.45 15 0.397 0.52 0.231 0.398 16 0.619 0.51 0.473 0.388 17 0.488 0.54 0.361 0.505 18 0.376 0.644 0.309 0.514 19 0.53 0.53 0.34 0.34 20 0.384 0.387 0.363 0.344 21 0.218 0.218 0.137 0.137 22 0.473 0.459 0.471 0.517 23 0.498 0.498 0.529 0.529 24 0.52 0.52 0.452 0.452 25 0.283 0.325 0.271 0.276 26 0.451 0.397 0.301	1				
12 0.42 0.388 0.395 0.404 13 0.284 0.357 0.257 0.4 14 0.399 0.523 0.247 0.45 15 0.397 0.52 0.231 0.398 16 0.619 0.51 0.473 0.388 17 0.488 0.54 0.361 0.505 18 0.376 0.644 0.309 0.514 19 0.53 0.53 0.34 0.34 20 0.384 0.387 0.363 0.344 21 0.218 0.218 0.137 0.137 21 0.218 0.218 0.137 0.137 22 0.473 0.459 0.471 0.517 23 0.498 0.498 0.529 0.529 24 0.52 0.52 0.452 0.452 25 0.283 0.325 0.271 0.276 26 0.451 0.397 0.301					
13 0.284 0.357 0.257 0.4 14 0.399 0.523 0.247 0.45 15 0.397 0.52 0.231 0.398 16 0.619 0.51 0.473 0.388 17 0.488 0.54 0.361 0.505 18 0.376 0.644 0.309 0.514 19 0.53 0.53 0.34 0.34 20 0.384 0.387 0.363 0.344 21 0.218 0.218 0.137 0.137 22 0.473 0.459 0.471 0.517 23 0.498 0.498 0.529 0.529 24 0.52 0.52 0.452 0.452 25 0.283 0.325 0.271 0.276 26 0.451 0.397 0.301 0.331 27 0.541 0.364 0.437 0.321 28 0.444 0.544 0.24					
14 0.399 0.523 0.247 0.45 15 0.397 0.52 0.231 0.398 16 0.619 0.51 0.473 0.388 17 0.488 0.54 0.361 0.505 18 0.376 0.644 0.309 0.514 19 0.53 0.53 0.34 0.34 20 0.384 0.387 0.363 0.344 21 0.218 0.218 0.137 0.137 22 0.473 0.459 0.471 0.517 23 0.498 0.498 0.529 0.529 24 0.52 0.52 0.452 0.452 25 0.283 0.325 0.271 0.276 26 0.451 0.397 0.301 0.331 27 0.541 0.364 0.437 0.321 28 0.444 0.544 0.248 0.457 29 0.317 0.378 0.					
15 0.397 0.52 0.231 0.398 16 0.619 0.51 0.473 0.388 17 0.488 0.54 0.361 0.505 18 0.376 0.644 0.309 0.514 19 0.53 0.53 0.34 0.34 20 0.384 0.387 0.363 0.344 21 0.218 0.218 0.137 0.137 22 0.473 0.459 0.471 0.517 23 0.498 0.498 0.529 0.529 24 0.52 0.52 0.452 0.452 25 0.283 0.325 0.271 0.276 26 0.451 0.397 0.301 0.331 27 0.541 0.364 0.437 0.321 28 0.444 0.544 0.248 0.457 29 0.317 0.378 0.202 0.252 30 0.4 0.4 0.456					
16 0.619 0.51 0.473 0.388 17 0.488 0.54 0.361 0.505 18 0.376 0.644 0.309 0.514 19 0.53 0.53 0.34 0.34 20 0.384 0.387 0.363 0.344 21 0.218 0.218 0.137 0.137 22 0.473 0.459 0.471 0.517 23 0.498 0.498 0.529 0.529 24 0.52 0.52 0.452 0.452 25 0.283 0.325 0.271 0.276 26 0.451 0.397 0.301 0.331 27 0.541 0.364 0.437 0.321 28 0.444 0.544 0.248 0.457 29 0.317 0.378 0.202 0.252 30 0.4 0.4 0.456 0.456 31 0.482 0.429 0.34					
17 0.488 0.54 0.361 0.505 18 0.376 0.644 0.309 0.514 19 0.53 0.53 0.34 0.34 20 0.384 0.387 0.363 0.344 21 0.218 0.218 0.137 0.137 22 0.473 0.459 0.471 0.517 23 0.498 0.498 0.529 0.529 24 0.52 0.52 0.452 0.452 25 0.283 0.325 0.271 0.276 26 0.451 0.397 0.301 0.331 27 0.541 0.364 0.437 0.321 28 0.444 0.544 0.248 0.457 29 0.317 0.378 0.202 0.252 30 0.4 0.4 0.456 0.456 31 0.482 0.429 0.344 0.355 32 0.62 0.455 0.42					
18 0.376 0.644 0.309 0.514 19 0.53 0.53 0.34 0.34 20 0.384 0.387 0.363 0.344 21 0.218 0.218 0.137 0.137 22 0.473 0.459 0.471 0.517 23 0.498 0.498 0.529 0.529 24 0.52 0.52 0.452 0.452 25 0.283 0.325 0.271 0.276 26 0.451 0.397 0.301 0.331 27 0.541 0.364 0.437 0.321 28 0.444 0.544 0.248 0.457 29 0.317 0.378 0.202 0.252 30 0.4 0.4 0.456 0.456 31 0.482 0.429 0.344 0.355 32 0.62 0.455 0.422 0.354 33 0.322 0.294 0.2					
19 0.53 0.53 0.363 0.344 20 0.384 0.387 0.363 0.344 21 0.218 0.137 0.137 22 0.473 0.459 0.471 0.517 23 0.498 0.498 0.529 0.529 24 0.52 0.52 0.452 0.452 25 0.283 0.325 0.271 0.276 26 0.451 0.397 0.301 0.331 27 0.541 0.364 0.437 0.321 28 0.444 0.544 0.248 0.457 29 0.317 0.378 0.202 0.252 30 0.4 0.4 0.456 0.456 31 0.482 0.429 0.344 0.355 32 0.62 0.455 0.422 0.354 33 0.322 0.294 0.294 34 0.49 0.477 0.523 0.489					
20 0.384 0.387 0.363 0.344 21 0.218 0.218 0.137 0.137 22 0.473 0.459 0.471 0.517 23 0.498 0.498 0.529 0.529 24 0.52 0.52 0.452 0.452 25 0.283 0.325 0.271 0.276 26 0.451 0.397 0.301 0.331 27 0.541 0.364 0.437 0.321 28 0.444 0.544 0.248 0.457 29 0.317 0.378 0.202 0.252 30 0.4 0.4 0.456 0.456 31 0.482 0.429 0.344 0.355 32 0.62 0.455 0.422 0.354 33 0.322 0.322 0.294 0.294 34 0.49 0.477 0.523 0.489 35 0.375 0.342	1				
21 0.218 0.218 0.137 0.137 22 0.473 0.459 0.471 0.517 23 0.498 0.498 0.529 0.529 24 0.52 0.52 0.452 0.452 25 0.283 0.325 0.271 0.276 26 0.451 0.397 0.301 0.331 27 0.541 0.364 0.437 0.321 28 0.444 0.544 0.248 0.457 29 0.317 0.378 0.202 0.252 30 0.4 0.4 0.456 0.456 31 0.482 0.429 0.344 0.355 32 0.62 0.455 0.422 0.354 33 0.322 0.324 0.294 0.294 34 0.49 0.477 0.523 0.489 35 0.375 0.342 0.225 0.348 36 0.463 0.314					
22 0.473 0.459 0.471 0.517 23 0.498 0.498 0.529 0.529 24 0.52 0.52 0.452 0.452 25 0.283 0.325 0.271 0.276 26 0.451 0.397 0.301 0.331 27 0.541 0.364 0.437 0.321 28 0.444 0.544 0.248 0.457 29 0.317 0.378 0.202 0.252 30 0.4 0.4 0.456 0.456 31 0.482 0.429 0.344 0.355 32 0.62 0.455 0.422 0.354 33 0.322 0.322 0.294 0.294 34 0.49 0.477 0.523 0.489 35 0.375 0.342 0.225 0.348 36 0.463 0.314 0.411 0.294 37 0.401 0.397	1			l	
23 0.498 0.498 0.529 0.529 24 0.52 0.52 0.452 0.452 25 0.283 0.325 0.271 0.276 26 0.451 0.397 0.301 0.331 27 0.541 0.364 0.437 0.321 28 0.444 0.544 0.248 0.457 29 0.317 0.378 0.202 0.252 30 0.4 0.4 0.456 0.456 31 0.482 0.429 0.344 0.355 32 0.62 0.455 0.422 0.354 33 0.322 0.322 0.294 0.294 34 0.49 0.477 0.523 0.489 35 0.375 0.342 0.225 0.348 36 0.463 0.314 0.411 0.294 37 0.401 0.397 0.421 0.437 38 0.523 0.566	1				
24 0.52 0.52 0.452 0.452 25 0.283 0.325 0.271 0.276 26 0.451 0.397 0.301 0.331 27 0.541 0.364 0.437 0.321 28 0.444 0.544 0.248 0.457 29 0.317 0.378 0.202 0.252 30 0.4 0.4 0.456 0.456 31 0.482 0.429 0.344 0.355 32 0.62 0.455 0.422 0.354 33 0.322 0.322 0.294 0.294 34 0.49 0.477 0.523 0.489 35 0.375 0.342 0.225 0.348 36 0.463 0.314 0.411 0.294 37 0.401 0.397 0.421 0.437 38 0.523 0.566 0.334 0.444 39 0.356 0.391	1				
25 0.283 0.325 0.271 0.276 26 0.451 0.397 0.301 0.331 27 0.541 0.364 0.437 0.321 28 0.444 0.544 0.248 0.457 29 0.317 0.378 0.202 0.252 30 0.4 0.4 0.456 0.456 31 0.482 0.429 0.344 0.355 32 0.62 0.455 0.422 0.354 33 0.322 0.322 0.294 0.294 34 0.49 0.477 0.523 0.489 35 0.375 0.342 0.225 0.348 36 0.463 0.314 0.411 0.294 37 0.401 0.397 0.421 0.437 38 0.523 0.566 0.334 0.444 39 0.356 0.391 0.295 0.368 40 0.381 0.453 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
26 0.451 0.397 0.301 0.331 27 0.541 0.364 0.437 0.321 28 0.444 0.544 0.248 0.457 29 0.317 0.378 0.202 0.252 30 0.4 0.4 0.456 0.456 31 0.482 0.429 0.344 0.355 32 0.62 0.455 0.422 0.354 33 0.322 0.294 0.294 34 0.49 0.477 0.523 0.489 35 0.375 0.342 0.225 0.348 36 0.463 0.314 0.411 0.294 37 0.401 0.397 0.421 0.437 38 0.523 0.566 0.334 0.444 39 0.356 0.391 0.295 0.368 40 0.381 0.453 0.382 0.538 41 0.287 0.519 0.294 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
27 0.541 0.364 0.437 0.321 28 0.444 0.544 0.248 0.457 29 0.317 0.378 0.202 0.252 30 0.4 0.4 0.456 0.456 31 0.482 0.429 0.344 0.355 32 0.62 0.455 0.422 0.354 33 0.322 0.322 0.294 0.294 34 0.49 0.477 0.523 0.489 35 0.375 0.342 0.225 0.348 36 0.463 0.314 0.411 0.294 37 0.401 0.397 0.421 0.437 38 0.523 0.566 0.334 0.444 39 0.356 0.391 0.295 0.368 40 0.381 0.453 0.382 0.538 41 0.287 0.519 0.294 0.531 42 0.429 0.397 <t< td=""><td>1</td><td></td><td></td><td></td><td></td></t<>	1				
28 0.444 0.544 0.248 0.457 29 0.317 0.378 0.202 0.252 30 0.4 0.4 0.456 0.456 31 0.482 0.429 0.344 0.355 32 0.62 0.455 0.422 0.354 33 0.322 0.294 0.294 34 0.49 0.477 0.523 0.489 35 0.375 0.342 0.225 0.348 36 0.463 0.314 0.411 0.294 37 0.401 0.397 0.421 0.437 38 0.523 0.566 0.334 0.444 39 0.356 0.391 0.295 0.368 40 0.381 0.453 0.382 0.538 41 0.287 0.519 0.294 0.531 42 0.429 0.397 0.273 0.469 43 0.533 0.341 0.522 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
29 0.317 0.378 0.202 0.252 30 0.4 0.4 0.456 0.456 31 0.482 0.429 0.344 0.355 32 0.62 0.455 0.422 0.354 33 0.322 0.294 0.294 34 0.49 0.477 0.523 0.489 35 0.375 0.342 0.225 0.348 36 0.463 0.314 0.411 0.294 37 0.401 0.397 0.421 0.437 38 0.523 0.566 0.334 0.444 39 0.356 0.391 0.295 0.368 40 0.381 0.453 0.382 0.538 41 0.287 0.519 0.294 0.531 42 0.429 0.397 0.273 0.469 43 0.533 0.341 0.522 0.274 44 0.386 0.425 0.46 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
30 0.4 0.4 0.456 0.456 31 0.482 0.429 0.344 0.355 32 0.62 0.455 0.422 0.354 33 0.322 0.294 0.294 34 0.49 0.477 0.523 0.489 35 0.375 0.342 0.225 0.348 36 0.463 0.314 0.411 0.294 37 0.401 0.397 0.421 0.437 38 0.523 0.566 0.334 0.444 39 0.356 0.391 0.295 0.368 40 0.381 0.453 0.382 0.538 41 0.287 0.519 0.294 0.531 42 0.429 0.397 0.273 0.469 43 0.533 0.341 0.522 0.274 44 0.386 0.425 0.46 0.357 45 0.343 0.391 0.25					
31 0.482 0.429 0.344 0.355 32 0.62 0.455 0.422 0.354 33 0.322 0.322 0.294 0.294 34 0.49 0.477 0.523 0.489 35 0.375 0.342 0.225 0.348 36 0.463 0.314 0.411 0.294 37 0.401 0.397 0.421 0.437 38 0.523 0.566 0.334 0.444 39 0.356 0.391 0.295 0.368 40 0.381 0.453 0.382 0.538 41 0.287 0.519 0.294 0.531 42 0.429 0.397 0.273 0.469 43 0.533 0.341 0.522 0.274 44 0.386 0.425 0.46 0.357 45 0.343 0.391 0.25 0.3 46 0.229 0.249 <t< td=""><td></td><td></td><td></td><td>l</td><td></td></t<>				l	
32 0.62 0.455 0.422 0.354 33 0.322 0.294 0.294 34 0.49 0.477 0.523 0.489 35 0.375 0.342 0.225 0.348 36 0.463 0.314 0.411 0.294 37 0.401 0.397 0.421 0.437 38 0.523 0.566 0.334 0.444 39 0.356 0.391 0.295 0.368 40 0.381 0.453 0.382 0.538 41 0.287 0.519 0.294 0.531 42 0.429 0.397 0.273 0.469 43 0.533 0.341 0.522 0.274 44 0.386 0.425 0.46 0.357 45 0.343 0.391 0.25 0.3 46 0.229 0.249 0.184 0.213 47 0.186 0.116 0.127 <t< td=""><td>1</td><td></td><td></td><td>l</td><td></td></t<>	1			l	
33 0.322 0.322 0.294 0.294 34 0.49 0.477 0.523 0.489 35 0.375 0.342 0.225 0.348 36 0.463 0.314 0.411 0.294 37 0.401 0.397 0.421 0.437 38 0.523 0.566 0.334 0.444 39 0.356 0.391 0.295 0.368 40 0.381 0.453 0.382 0.538 41 0.287 0.519 0.294 0.531 42 0.429 0.397 0.273 0.469 43 0.533 0.341 0.522 0.274 44 0.386 0.425 0.46 0.357 45 0.343 0.391 0.25 0.3 46 0.229 0.249 0.184 0.213 47 0.186 0.116 0.127 0.113 48 0.404 0.373 <					
34 0.49 0.477 0.523 0.489 35 0.375 0.342 0.225 0.348 36 0.463 0.314 0.411 0.294 37 0.401 0.397 0.421 0.437 38 0.523 0.566 0.334 0.444 39 0.356 0.391 0.295 0.368 40 0.381 0.453 0.382 0.538 41 0.287 0.519 0.294 0.531 42 0.429 0.397 0.273 0.469 43 0.533 0.341 0.522 0.274 44 0.386 0.425 0.46 0.357 45 0.343 0.391 0.25 0.3 46 0.229 0.249 0.184 0.213 47 0.186 0.116 0.127 0.113 48 0.404 0.373 0.38 0.264 49 0.479 0.424 <t< td=""><td>1</td><td></td><td></td><td></td><td></td></t<>	1				
35 0.375 0.342 0.225 0.348 36 0.463 0.314 0.411 0.294 37 0.401 0.397 0.421 0.437 38 0.523 0.566 0.334 0.444 39 0.356 0.391 0.295 0.368 40 0.381 0.453 0.382 0.538 41 0.287 0.519 0.294 0.531 42 0.429 0.397 0.273 0.469 43 0.533 0.341 0.522 0.274 44 0.386 0.425 0.46 0.357 45 0.343 0.391 0.25 0.3 46 0.229 0.249 0.184 0.213 47 0.186 0.116 0.127 0.113 48 0.404 0.373 0.38 0.264 49 0.479 0.424 0.358 0.22					
36 0.463 0.314 0.411 0.294 37 0.401 0.397 0.421 0.437 38 0.523 0.566 0.334 0.444 39 0.356 0.391 0.295 0.368 40 0.381 0.453 0.382 0.538 41 0.287 0.519 0.294 0.531 42 0.429 0.397 0.273 0.469 43 0.533 0.341 0.522 0.274 44 0.386 0.425 0.46 0.357 45 0.343 0.391 0.25 0.3 46 0.229 0.249 0.184 0.213 47 0.186 0.116 0.127 0.113 48 0.404 0.373 0.38 0.264 49 0.479 0.424 0.358 0.22	1				
37 0.401 0.397 0.421 0.437 38 0.523 0.566 0.334 0.444 39 0.356 0.391 0.295 0.368 40 0.381 0.453 0.382 0.538 41 0.287 0.519 0.294 0.531 42 0.429 0.397 0.273 0.469 43 0.533 0.341 0.522 0.274 44 0.386 0.425 0.46 0.357 45 0.343 0.391 0.25 0.3 46 0.229 0.249 0.184 0.213 47 0.186 0.116 0.127 0.113 48 0.404 0.373 0.38 0.264 49 0.479 0.424 0.358 0.22					
38 0.523 0.566 0.334 0.444 39 0.356 0.391 0.295 0.368 40 0.381 0.453 0.382 0.538 41 0.287 0.519 0.294 0.531 42 0.429 0.397 0.273 0.469 43 0.533 0.341 0.522 0.274 44 0.386 0.425 0.46 0.357 45 0.343 0.391 0.25 0.3 46 0.229 0.249 0.184 0.213 47 0.186 0.116 0.127 0.113 48 0.404 0.373 0.38 0.264 49 0.479 0.424 0.358 0.22					
39 0.356 0.391 0.295 0.368 40 0.381 0.453 0.382 0.538 41 0.287 0.519 0.294 0.531 42 0.429 0.397 0.273 0.469 43 0.533 0.341 0.522 0.274 44 0.386 0.425 0.46 0.357 45 0.343 0.391 0.25 0.3 46 0.229 0.249 0.184 0.213 47 0.186 0.116 0.127 0.113 48 0.404 0.373 0.38 0.264 49 0.479 0.424 0.358 0.22			0.397		
40 0.381 0.453 0.382 0.538 41 0.287 0.519 0.294 0.531 42 0.429 0.397 0.273 0.469 43 0.533 0.341 0.522 0.274 44 0.386 0.425 0.46 0.357 45 0.343 0.391 0.25 0.3 46 0.229 0.249 0.184 0.213 47 0.186 0.116 0.127 0.113 48 0.404 0.373 0.38 0.264 49 0.479 0.424 0.358 0.22					
41 0.287 0.519 0.294 0.531 42 0.429 0.397 0.273 0.469 43 0.533 0.341 0.522 0.274 44 0.386 0.425 0.46 0.357 45 0.343 0.391 0.25 0.3 46 0.229 0.249 0.184 0.213 47 0.186 0.116 0.127 0.113 48 0.404 0.373 0.38 0.264 49 0.479 0.424 0.358 0.22					
42 0.429 0.397 0.273 0.469 43 0.533 0.341 0.522 0.274 44 0.386 0.425 0.46 0.357 45 0.343 0.391 0.25 0.3 46 0.229 0.249 0.184 0.213 47 0.186 0.116 0.127 0.113 48 0.404 0.373 0.38 0.264 49 0.479 0.424 0.358 0.22	1				
43 0.533 0.341 0.522 0.274 44 0.386 0.425 0.46 0.357 45 0.343 0.391 0.25 0.3 46 0.229 0.249 0.184 0.213 47 0.186 0.116 0.127 0.113 48 0.404 0.373 0.38 0.264 49 0.479 0.424 0.358 0.22					
44 0.386 0.425 0.46 0.357 45 0.343 0.391 0.25 0.3 46 0.229 0.249 0.184 0.213 47 0.186 0.116 0.127 0.113 48 0.404 0.373 0.38 0.264 49 0.479 0.424 0.358 0.22					
45 0.343 0.391 0.25 0.3 46 0.229 0.249 0.184 0.213 47 0.186 0.116 0.127 0.113 48 0.404 0.373 0.38 0.264 49 0.479 0.424 0.358 0.22					
46 0.229 0.249 0.184 0.213 47 0.186 0.116 0.127 0.113 48 0.404 0.373 0.38 0.264 49 0.479 0.424 0.358 0.22					
47 0.186 0.116 0.127 0.113 48 0.404 0.373 0.38 0.264 49 0.479 0.424 0.358 0.22					
48 0.404 0.373 0.38 0.264 49 0.479 0.424 0.358 0.22					
49 0.479 0.424 0.358 0.22	1				
0.333					
	50	0.422	0.312	0.441	0.333

Table 6: Compactness scores by district for the Senate plans.

		Reock	Pols	by-Popper
HD	SL-175	NCLCV-House	SL-175	NCLCV-House
1	0.413	0.393	0.213	0.168
2	0.316	0.404	0.326	0.468
3	0.377	0.448	0.298	0.329
4	0.482	0.337	0.448	0.237
5	0.28	0.28	0.3	0.3
6	0.389	0.539	0.479	0.549
7	0.476	0.442	0.44	0.403
8	0.394	0.437	0.327	0.314
9	0.587	0.698	0.411	0.425
10	0.589	0.606	0.567	0.398
11	0.359	0.654	0.246	0.473
12	0.312	0.312	0.291	0.291
13	0.379	0.367	0.425	0.488
14	0.384	0.305	0.291	0.204
15	0.546	0.468	0.371	0.395
16	0.404	0.483	0.242	0.388
17	0.416	0.668	0.227	0.473
18	0.589	0.336	0.37	0.374
19	0.462	0.482	0.285	0.359
20	0.463	0.172	0.557	0.173
21	0.45	0.591	0.206	0.469
22	0.528	0.528	0.361	0.361
23	0.453	0.453	0.359	0.359
24	0.463	0.554	0.538	0.638
25	0.463	0.402	0.511	0.455
26	0.45	0.474	0.4	0.412
27	0.433	0.433	0.353	0.353
28	0.573	0.411	0.498	0.43
29	0.36	0.519	0.333	0.645
30	0.381	0.306	0.356	0.389
31	0.415	0.476	0.323	0.533
32	0.534	0.528	0.587	0.543
33	0.491	0.254	0.289	0.252
34	0.414	0.383	0.289	0.349
35	0.28	0.528	0.292	0.464
36	0.586	0.396	0.532	0.443
37	0.417	0.372	0.369	0.379
38	0.377	0.522	0.247	0.383
39	0.649	0.399	0.519	0.245
40	0.413	0.342	0.319	0.243
41	0.413	0.581	0.330	0.498
42	0.521	0.402	0.423	0.498
42	0.537	0.402	0.393	0.238
43	0.52	0.564	0.281	0.564
45	0.248	0.555	0.419	0.495
45	0.246	0.333	0.274	0.493
47	0.604	0.432	0.239	0.453
47	0.804	0.333	0.498	0.442
48	0.479	0.479	0.442	0.442
50	0.447	0.384	0.338	0.388
51	0.375	0.384	0.343	0.388
	0.46			
52 53		0.468	0.214 0.256	0.28 0.449
54	0.322 0.459	0.597 0.486		0.449
			0.376	
55	0.458	0.534	0.312	0.399
56	0.502	0.652	0.37	0.691
57	0.436	0.589	0.368	0.475
58	0.397	0.521	0.257	0.432
59	0.455	0.463	0.334	0.56
60	0.383	0.361	0.261	0.407

		Reock	Pols	sby-Popper
HD	SL-175	NCLCV-House	SL-175	NCLCV-House
61	0.388	0.356	0.294	0.346
62	0.318	0.651	0.234	0.589
63	0.56	0.596	0.353	0.533
64	0.329	0.48	0.257	0.459
65	0.594	0.594	0.764	0.764
66	0.457	0.46	0.264	0.293
67	0.444	0.444	0.486	0.486
68	0.45	0.577	0.305	0.502
69	0.539	0.49	0.346	0.364
70	0.542	0.638	0.535	0.65
71	0.342	0.488	0.333	0.509
72	0.521	0.495	0.27	0.398
73	0.487	0.46	0.421	0.612
74	0.367	0.548	0.299	0.425
75	0.388	0.468	0.266	0.53
76	0.43	0.43	0.497	0.497
77	0.408	0.408	0.297	0.297
78	0.341	0.479	0.204	0.447
79	0.523	0.353	0.36	0.2
80	0.285	0.413	0.319	0.359
81	0.481	0.434	0.312	0.359
82	0.311	0.444	0.32	0.477
83	0.474	0.473	0.328	0.342
84	0.498	0.57	0.515	0.645
85	0.501	0.493	0.315	0.299
86	0.49	0.49	0.437	0.437
87	0.538	0.512	0.437	0.526
88	0.233	0.367	0.211	0.364
89	0.304	0.462	0.291	0.338
90	0.508	0.431	0.349	0.381
91	0.541	0.563	0.522	0.583
92	0.28	0.399	0.244	0.455
93	0.317	0.33	0.288	0.319
94	0.507	0.496	0.348	0.371
95	0.616	0.49	0.596	0.516
96	0.358	0.316	0.351	0.33
97	0.338	0.310	0.515	0.515
98	0.593	0.574	0.576	0.589
99	0.469	0.471	0.322	0.443
100	0.537	0.359	0.333	0.312
101	0.488	0.518	0.31	0.515
102	0.392	0.621	0.23	0.36
103	0.278	0.546	0.349	0.479
104	0.573	0.432	0.32	0.313
105	0.395	0.437	0.419	0.391
106	0.599	0.485	0.419	0.503
		0.485		
107	0.304		0.183	0.556
108	0.374	0.402	0.24	0.288
109	0.466	0.485	0.421	0.522
110	0.355	0.514	0.277	0.39
111	0.348	0.641	0.24	0.436
112	0.58	0.266	0.397	0.229
113	0.392	0.368	0.224	0.186
114	0.307	0.549	0.182	0.46
115	0.559	0.308	0.132	0.289
116	0.401	0.532	0.159	0.332
117	0.422	0.581	0.271	0.393
118	0.412	0.412	0.247	0.247
119	0.276	0.276	0.22	0.22
120	0.4	0.4	0.367	0.367
				l

Table 7: Compactness scores by district for the House plans.

- **Respect for political subdivisions.** For legislative redistricting, North Carolina has one of the strongest requirements for county consideration of any state in the nation. In my understanding, courts have interpreted the Whole County Provisions as follows.⁶
 - First, if any county is divisible into a whole number of districts that will be within $\pm 5\%$ of ideal population, then it must be subdivided accordingly without districts crossing into other counties.
 - Next, seek any contiguous grouping of two counties that is similarly divisible into a whole number of districts.
 - Repeat for groupings of three, and so on, until all counties are accounted for.

Once clusters have been formed, there are more rules about respecting county lines within clusters. The legal language is again explicit: "[T]he resulting interior county lines created by any such groupings may be crossed or traversed in the creation of districts within said multi-county grouping but only to the extent necessary" to meet the $\pm 5\%$ population standard for districts. To address this, I have counted the *county traversals* in each plan, i.e., the number of times a district crosses between adjacent counties within a grouping.

Table 8 reflects the county integrity metric that is most relevant at each level: the enacted congressional plan splits 11 counties into 25 pieces while the alternative plan splits 13, but splits no county three ways. (The enacted plans unnecessarily split three counties into three pieces.) In the legislative plans, the law specifies traversals as the fundamental integrity statistic.

County and municipality preservation

	# county pieces		# traversals
SL-174	25	SL-173	97
NCLCV-Cong	26	NCLCV-Sen	89
		SL-175	69
		NCLCV-House	66

	# municipal pieces	# municipal pieces
	(considering all blocks)	(considering populated blocks)
SL-174	90	50
NCLCV-Cong	58	41
SL-173	152	91
NCLCV-Sen	125	100
SL-175	292	222
NCLCV-House	201	173

Table 8: Comparing the plans' conformance to political boundaries.

⁶A complete set of solutions is described in detail in the white paper of Mattingly et al.—though with the important caveat that the work "does not reflect... compliance with the Voting Rights Act" [4]. Absent a VRA conflict, the 2020 Decennial Census population data dictates that the North Carolina Senate plan must be decomposed into ten single-district fixed clusters and seven multi-district fixed clusters (comprising 2, 2, 3, 3, 4, 6, and 6 districts, respectively). It has four more areas in which there is a choice of groupings. In all, there are sixteen different possible clusterings for Senate, each comprising 26 county clusters. The House likewise has 11 single-district fixed clusters and 22 multi-district fixed clusters (with two to thirteen districts per cluster), together with three more areas with a choice of groupings. In all, the House has only eight acceptable clusterings, each comprising 40 county clusters. Again, it is important to note that VRA compliance may present a compelling reason to select some clusterings and reject others.

The alternative plans are comparable to the enacted plans, and often superior, in each of these key metrics regarding preservation of political boundaries. This remains true whether splits of municipalities are counted by the division of any of their census blocks, or only by the division of populated census blocks.

I will briefly mention several additional redistricting principles.

- **Communities of interest.** In North Carolina, there was no sustained effort by the state or by community groups to formally collect community of interest (COI) maps, to my knowledge. Without this, it is difficult to produce a suitable metric.
- Cores of prior districts. In some states, there is statutory guidance to seek districting plans that preserve the cores of prior districts. In North Carolina, this is not a factor in the constitution, in statute, or in case law. In addition, attention to core preservation would be prohibitively difficult in the Senate and House because of the primacy of the Whole County Provisions, which forces major changes to the districts simply as a consequence of fresh population numbers.
- Incumbent pairing. In 2017, the North Carolina legislative redistricting committee listed "incumbency protection" as a goal in their itemization of principles. In 2021, this was softened to the statement that "Member residence may be considered" in the drawing of districts. I have counted the districts in each plan that contain more than one incumbent address; these are sometimes colorfully called "double-bunked" districts. For this statistic, it is not entirely clear whether a high or low number is preferable. When a plan remediates a gerrymandered predecessor, we should not be surprised if it ends up pairing numerous incumbents.

Double-bunking

	# districts pairing incumbents
SL-174	3
NCLCV-Cong	1
SL-173	5
NCLCV-Sen	9
SL-175	6
NCLCV-House	16

Table 9: For Congress and Senate, the enacted and alternative plans are comparable; at the House level, the alternative plan has more double-bunking. *Note: These numbers were calculated using incumbent addresses that I understand were provided by the Legislative Defendants.*

4.2 Swing districts and competitive contests

Another way to understand the electoral properties of districting plans is to investigate how many districts always give the same partisan result over a suite of observed electoral conditions, and how many districts can "swing" between the parties. Figure 6 compares the six plans across the up-ballot elections. The enacted plans lock in large numbers of always-Republican seats. In the Senate and House, nearly half the seats are locked down for Republicans. In the Congressional plan, it's well *over* half. This provides another view from which the NCLCV plans provide attractive alternatives.

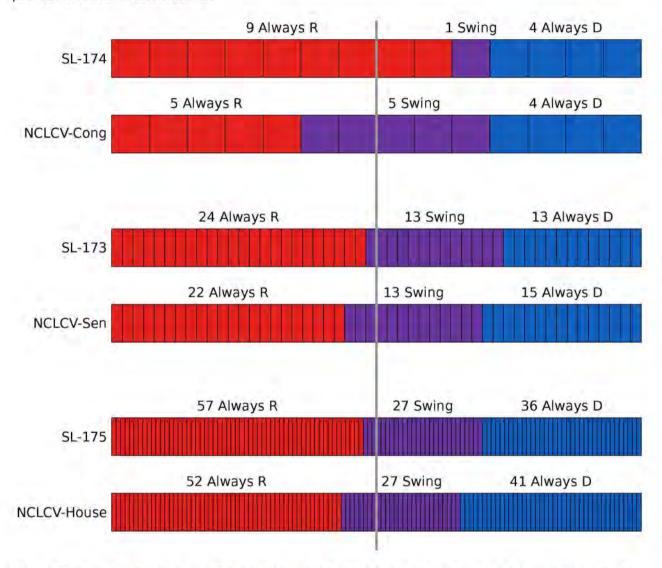


Figure 6: These visuals show the breakdown of seats that always have a Republican winner, always have a Democratic winner, or are sometimes led by each party across the 14 up-ballot elections over the previous Census cycle. The 50-50 split is marked.

In interpreting this visualization, note that this is consistent with the discussion elsewhere of entrenched Republican majorities in the enacted maps. These Always-Republican districts provide a *floor* for Republican performance from the viewpoint of these up-ballot contests.

One more measure of partisan fairness, frequently referenced in the public discourse, is the tendency of a districting plan to promote close or competitive contests. We close with a comparison of the enacted and alternative plans that displays the number of times across the full dataset of 52 elections that a contest had a partisan margin of closer than 10 points, 6 points, or 2 points, respectively. This can occur up to $14 \cdot 52 = 728$ times in Congressional maps, $50 \cdot 52 = 2600$ times in state Senate maps, and $120 \cdot 52 = 6240$ times in state House maps. The figures below show horizontal rules at every 10% interval of the total number of possible competitive contests; we can see, for instance, that the alternative Congressional plan has contests within a 10-point margin more than 40% of the time.

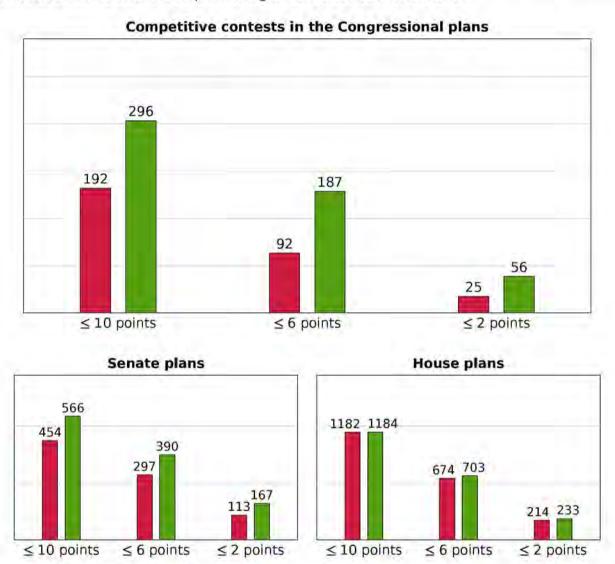


Figure 7: These bar graphs show the number of competitive contests for the enacted plans (maroon) and the alternative plans (green). In each plot, we consider increasingly restrictive definitions of "competitive" from left to right, counting districts in which the major-party vote split is closer than 45-55, 47-53, and 49-51, respectively.

5 Location-specific comparison of electoral opportunity

I received information reflecting the residential locations of 147 individuals, who come from either of two groups:

- plaintiffs in the NCLCV v. Hall case; or
- registered voters belonging to the NCLCV membership who are Black and/or are registered as Democrats.

In Table 10 below, I summarize the impact on the identified individuals in terms of electoral opportunity if the enacted maps are compared to the alternative maps.

Subsequently, Figures 8 and 9 provide a visualization that pinpoints the geographical sites where the alternative plans improve electoral opportunities for plaintiffs and NCLCV members—that is, places where the identified individuals (as Democrats and/or Black voters) have measurably greater ability to elect their candidates of choice under the alternative plans than under the existing plans.

This is backed up by the data in Tables 11-13 below, which identify the district numbers in the six enacted and alternative plans for each of these identified individuals. The district numbers were computed using census block information to specify the locations, but the table reports the locations by larger units (VTDs) in order to protect privacy.

Lost opportunity for Democratic and Black voters

greater Democratic opportunity in alternative plan than enacted plan

	president of the contract of the contrac
Congress	51 individuals
Senate	37 individuals
House	39 individuals

resides in effective district in alternative plan but not enacted plan

Congress	28 Black voters
Senate	21 Black voters
House	21 Black voters

Table 10: Of the 147 identified individuals, how many saw a change in their opportunity for Democratic representation? How many Black voters saw a change in their opportunity to elect Black candidates of choice?

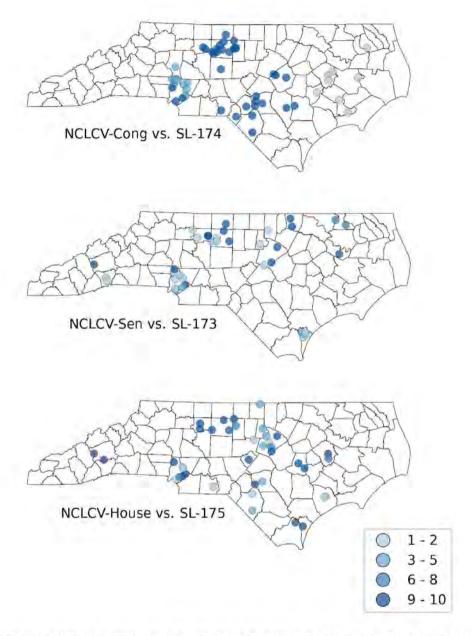


Figure 8: Locations where identified individuals have less opportunity to be represented by a Democrat in Congress, state Senate, and state House under the enacted plans. The shading indicates the drop in Democratic wins across the 14 up-ballot races in the enacted map relative to the alternative map. There are 51 such individuals in the Congressional maps, 37 in the Senate maps, and 31 in the House maps.

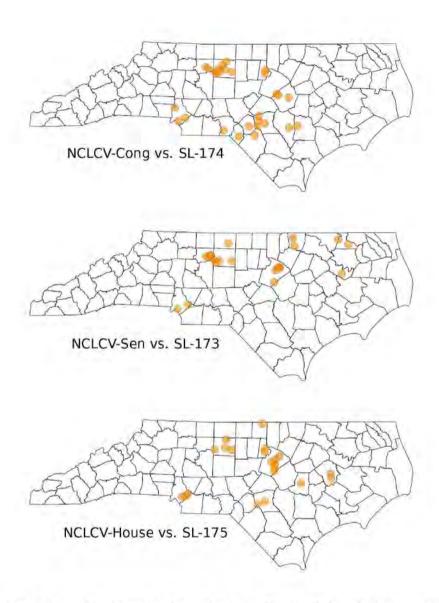


Figure 9: Locations where Black voters from the identified individuals list would be in a district that provides effective electoral opportunity under the alternative plan, but not under the enacted plan. There are 28 such voters at the Congressional level and 21 at each of the Senate and House level.

VTD Census ID	VTD/Precinct Name	SL-174	NCLCV-Cong	SL-173	NCLCV-Sen	SL-175	NCLCV-House
37025001-07	01-07	10	10	34	34	73	73
37025012-03	12-03	10	10	34	34	82	82
37025002-07	02-07	10	10	34	34	83	73
37009000002	CLIFTON	11	12	47	47	93	93
37063000029	GLENN ELEMENTARY	6	2	22	22	2	2
37063000043	FOREST VIEW ELEMENTARY	6	6	22	20	30	30
37063000052	EVANGEL ASSEMBLY OF GOD	6	2	22	22	31	31
37063055-11	055-11	6	6	20	22	29	29
37071000012	FLINT GROVES	13	13	43	43	108	108
37071000004	FOREST HEIGHTS	13	13	43	43	109	109
37057000076	THOMASVILLE 10 76	7	8	30	30	80	80
371350000EF	EFLAND	6	6	23	23	50	50
371050000A2	A2	7	7	12	12	51	54
37131NEWTOW	NEWTOWN	2	2	1	1	27	27
371350000CF	CEDAR FALLS	6	6	23	23	56	56
37081000H25	H25	10	11	27	27	62	60
37093000061	RAEFORD 1	8	4	24	24	48	48
37093000001 37081000RC2	RC2	7	11	26	26	59	59
3712700P15A	OAK LEVEL	2	2	11	11	25	25
3707700TYHO	00TYHO	2	2	13	13	32	32
370910000CO	COFIELD		1	13	13	5	5
37057000038		7	8	30	30	-	
	EASTSIDE 38 HAW CREEK ELEMENTARY	14		49	49	81	81
370210021.1	SCHOOL		14			115	114
37019000015	GRISSETTOWN	3	3	8	8	17	19
37047000P15	TATUM	3	3	8	8	46	46
37019000002	LELAND	3	3	8	8	17	17
370450CASAR	CASAR	13	13	44	44	110	111
370210007.1	KENILWORTH PRESBYTE- RIAN CHURCH	14	14	49	49	114	115
370210053.1	LEICESTER 2 - COMMUNITY CENTER	14	14	46	49	116	116
370210054.2	LUTHERAN CHURCH OF THE NATIVITY	14	14	49	49	116	115
37193000108	FAIRPLAINS	11	12	36	36	94	94
37173000BC2	BC2	14	14	50	47	119	119
37119000054	54	9	9	40	42	102	112
37119000108	108	9	9	40	40	100	100
37119000100	208	13	10	37	38	98	98
371190204.1	204.1	9	10	40	40	99	106
37119000097	97	9	9	42	39	112	105
37119000027	222	9	9	38	39	101	101
37097000ST6	STATESVILLE 6	12	10	37	37	84	84
37097000316 370970DV1-B	DAVIDSON 1-B	10	10	37	37	95	95
37119000048	48	9	9	42	42	88	104
27110000216	316	-		4.4	4.1	100	00
3/119000216	Z16	11	9	41	41	103	99
37081000G27	G27	11	11	28	28	57	57
37081000G43	G43	11	11	27	28	58	62
37153000006	WOLF PIT 3	8	4	29	29	52	52
371570000MS	MOSS STREET	11	6	26	26	65	65
3716300ROWA	ROWAN	4	4	9	9	22	22
3719500PRWI	WILSON I	2	2	4	4	24	24
37119000206	206	13	10	37	37	98	98
37119000236	236	8	10	41	40	103	99

Table 11: Locations of identified individuals, Part 1 of 3. For each location, the district numbers are given for the six plans discussed here. VTDs are listed rather than the more precise census block in order to protect privacy. Rows highlighted **blue** indicate individuals who lose Democratic opportunity in at least one of the enacted plans, relative to the alternative plans. Rows highlighted **orange** indicate Black voters who lose the opportunity to be in an effective district for Black candidates of choice in at least one level. (As it turns out, every instance of lost opportunity for Black voters is also an instance of lost Democratic opportunity.)

VTD Census ID	VTD/Precinct Name	SL-174	NCLCV-Cong	SL-173	NCLCV-Sen	SL-175	NCLCV-House
37119000142	142	13	10	38	38	98	112
37081000G65	G65	11	11	27	27	58	58
37081000G70	G70	11	11	28	26	61	61
3708100H19A	H19A	10	11	27	27	60	60
3708100MON3	MON3	11	11	26	28	59	57
37183015-01	15-01	5	7	17	14	37	38
37183019-17	19-17	5	5	18	18	39	66
37183001-31	01-31	5	5	15	15	11	33
37183012-02	12-02	7	7	17	17	37	37
37119000087	87	8	9	41	41	105	105
37119000068	68	9	9	42	41	104	100
371190223.1	223.1	13	9	39	39	101	101
37119000081	81	9	9	39	39	92	101
37119000237	237	9	10	38	40	106	106
37119000127	127	13	10	37	37	98	98
37191000014	14	2	1	4	4	4	10
37183005-01	05-01	6	7	16	16	41	41
37183020-09	20-09	6	7	16	17	36	36
37183004-18	04-18	6	7	16	16	49	11
37191000010	10	2	í	4	4	10	10
37183019-21	19-21	5	5	13	18	35	66
37183001-46	01-46	5	5	18	18	34	40
37183001-40	01-50	5	5	14	14	33	38
37183016-05	16-05	5	5	14	14	21	38
37119000145	145	9	10	38	38	107	107
37183008-03	08-03	5	5	15	15	40	49
37183008-03	17-05	5	5	14	18	38	40
37183017-03	13-09	5	5	18	18	66	66
370490000N2	FORT TOTTEN	1	1	3	3	3	3
370490000N2	HAVELOCK	1	1	3	3	13	13
		7					
37001000004	MORTON	4	6	25	25	64	63
37001000126	BURLINGTON 6	/	6	25	25	63	64
3700100003N	NORTH BOONE	7	6	25	25	64	64
37001000124	BURLINGTON 4	7	6	25	25	63	63
37165001-16	01-16/01	8	4	24	24	48	48
37067000063	CASH ELEMENTARY SCHOOL	12	12	31	32	75	75
37067000074	MEADOWLARK MIDDLE SCHOOL	12	12	31	31	74	74
37067000709	WARD ELEMENTARY SCHOOL	12	12	32	31	74	71
37067000065	KERNERSVILLE 7TH DAY AD- VENTIST CHURCH	12	12	31	32	75	75
37067000507	SEDGE GARDEN REC CTR	12	11	32	32	71	75
371510000AE	ASHEBORO EAST	7	11	29	29	70	70
37067000905	BETHABARA MORAVIAN CH	12	12	32	31	91	72
37067000402	FOURTEENTH STREET REC	12	11	32	32	72	72
370890000FR	FLAT ROCK	14	14	48	48	113	117
3708900HV-1	HENDERSONVILLE-1	14	14	48	48	117	117
37023000039	MORGANTON 09	13	13	46	46	86	86
3710900LB34	LABORATORY	12	13	44	46	97	97
3706100WARS	WARSAW	3	4	9	9	4	4
3712900CF01	CF01	3	3	8	7	18	17
370130BELHV	BELHAVEN	1	1	3	3	79	1

Table 12: Locations of identified individuals, Part 2 of 3. For each location, the district numbers are given for the six plans discussed here. VTDs are listed rather than the more precise census block in order to protect privacy. Rows highlighted **blue** indicate individuals who lose Democratic opportunity in at least one of the enacted plans, relative to the alternative plans. Rows highlighted **orange** indicate Black voters who lose the opportunity to be in an effective district for Black candidates of choice in at least one level. (As it turns out, every instance of lost opportunity for Black voters is also an instance of lost Democratic opportunity.)

37037NWM117 3714100CL05 3713300BM08	NORTH WILLIAMS	7					
3713300BM08		/	7	20	20	54	54
	COLUMBIA	3	3	9	9	16	16
2712200NID02	BRYNN MARR	1	3	6	6	14	15
3713300NR02	NEW RIVER	1	3	6	6	15	15
37051SL78-3	Spring Lake 3	-4	4	21	21	42	44
3705100G10A	STONEY POINT 2-G10	4	4	19	19	45	45
37051000G1A	CROSS CREEK 02-G1	4	4	19	19	43	42
37035000035	SWEETWATER	12	13	45	45	96	96
37035000032	SOUTH NEWTON	12	13	45	45	89	89
3705100CC32	CROSS CREEK 32	4	4	19	19	44	44
37059000007	JERUSALEM	10	8	30	30	77	77
3708500PR01	ANDERSON CREEK	4	7	12	12	6	6
3708500PR07	BARBECUE	4	7	12	12	6	6
371070000K8	KINSTON-8	1	i	3	3	12	12
37189000009	ELK	14	12	47	47	87	93
371170000BG	BEAR GRASS	2	1	2	1	23	23
371010PR12B	NORTH CLEVELAND 2	4	2	10	10	26	26
371010PR31B	SOUTHWEST CLEVELAND	4	2	10	10	53	53
3710100PR24	EAST SELMA	4	2	10	10	28	28
3714701102A	SIMPSON A	1	1	5	5	g	8
37167000003	ALBEMARLE NUMBER 3	8	8	33	33	67	67
3700700LILE	LILESVILLE	8	8	29	29	55	55
3704500KM-N	KM N	13	13	44	44	111	110
37143BETHEL	BETHEL	1	1	1	2	1	1
37147000601	CHICOD	1	1	5	5	9	9
37147000001	PACTOLUS	1	1	5	5	8	8
37159000040	NORTH WARD	10	8	33	33	76	76
3712900FP04	FP04	3	3	7	8	19	20
3712900FP04 37129000W16	W16	3	3	7	7	20	18
37129000W16 37129000H11	H11	3	3	7	7	18	20
37129000H11	H02	3	3	7	7	20	20
37129000H02 37159000036	SOUTH WARD	10	8	33	33	76	76
37125000DHR	DEEP RIVER/HIGH	8	7	21	21	78	51
27000000015	FALLS/RITTER	~	-			- 2	7
37069000015	EAST FRANKLINTON	2	2	11	11	7	
3719908-CRA	CRABTREE	14	14	47	47	85	85
3719700EBND	EAST BEND	12	12	36	31	77	77
37171000018	MT AIRY 8	11	12	36	36	90	90
3708700WS-2	WAYNESVILLE SOUTH 2	14	14	50	50	118	118
3715500005A	FAIRMONT	3	4	24	24	46	47
37155000028	RENNERT	3	4	24	24	47	47
37113000011	SMITHBRIDGE	14	14	50	50	120	120
3714500WDSD	WOODSDALE	2	6	23	23	2	2
3717900029A	SHILOH ELEMENTARY SCHOOL	8	8	35	35	68	69
3717900037A	NEXT LEVEL CHURCH	8	8	35	35	69	69
37169000017	WEST WALNUT COVE	11	12	31	36	91	91
37185000007	SHOCCO	2	2	2	1	27	27
37185000013	NORLINA	2	2	2	1	27	27

Table 13: Locations of identified individuals, Part 3 of 3. For each location, the district numbers are given for the six plans discussed here. VTDs are listed rather than the more precise census block in order to protect privacy. Rows highlighted blue indicate individuals who lose Democratic opportunity in at least one of the enacted plans, relative to the alternative plans. Rows highlighted orange indicate Black voters who lose the opportunity to be in an effective district for Black candidates of choice in at least one level. (As it turns out, every instance of lost opportunity for Black voters is also an instance of lost Democratic opportunity.)

References

- [1] Assaf Bar-Natan, Lorenzo Najt, and Zachary Schutzmann, *The gerrymandering jumble: map projections permute districts' compactness scores*. Cartography and Geographic Information Science, Volume 47, Issue 4, 2020, 321–335.
- [2] Richard Barnes and Justin Solomon, *Gerrymandering and Compactness: Implementation Flexibility and Abuse.* Political Analysis, Volume 29, Issue 4, October 2021, 448–466.
- [3] Amariah Becker, Moon Duchin, Dara Gold, and Sam Hirsch, *Computational redistricting* and the Voting Rights Act. Election Law Journal.

 Available at https://www.liebertpub.com/doi/epdf/10.1089/elj.2020.0704
- [4] Christopher Cooper, Blake Esselstyn, Gregory Herschlag, Jonathan Mattingly, and Rebecca Tippett, *NC General Assembly County Clusterings from the 2020 Census*. https://sites.duke.edu/quantifyinggerrymandering/files/2021/08/countyClusters2020.pdf
- [5] Moon Duchin, Taissa Gladkova, Eugene Henninger-Voss, Heather Newman, and Hannah Wheelen, *Locating the Representational Baseline: Republicans in Massachusetts.* Election Law Journal, Volume 18, Number 4, 2019, 388–401.

I declare under penalty of perjury that the foregoing is true and correct.

Executed this 3 day of December, 2021.

Professor Moon Duchin

Sworn and subscribed before me this the 3 of December, 2021

Notary Public

SHANNON C PETERSON
Notary Public
State of Colorado
Notary ID # 20214018369
My Commission Expires 05-10-2025

Name: Shannon C. Retegon

My commission expires: 05/10/2025